Mentre il mondo si prepara per l’obbligatoria transizione verso forme d’energia maggiormente pulite, c’è una problematica domanda insiste sulle delicate operazioni tecnologiche di aggiornamento di risorse ed infrastrutture: da dove, esattamente potremo procurarci i materiali necessari? Tutto quel nickel, rame e cobalto, che l’umanità ha dovuto utilizzare fino ad ora per la produzione di motori elettrici e batterie. Ma su scale relativamente più gestibili di quelle che stanno iniziando a profilarsi all’orizzonte. Non che questa Terra, allo stato attuale dei fatti, sia ancora arida e del tutto priva di risorse. Sebbene urti l’immaginazione, e decisamente non poco, l’ipotesi futura di colossali miniere a cielo aperto, che deturpano il paesaggio e inquinano ancor più degli autoveicoli che stavano iniziando a scomparire dalle strade. Si dice che le profondità oceaniche ci siano meno conosciute delle remote distanze cosmiche attraverso lo spazio esterno. E come tutte le frontiere, nascondono risorse significative pronte da essere semplicemente prese allungando una (lunga) mano. Perciò, nessuno potrà dubitare che ivi alberghi una possibile risoluzione del problema. A conto di poter fare affidamento su importanti progressi procedurali e tecnologici, per semplificare quello che altrimenti rischierebbe di diventare uno dei processi più difficoltosi, ed improduttivi, dell’odierna economia di scala.
Quando si affermava anticamente che le strade erano letteralmente lastricate d’oro e argento nel cosiddetto Nuovo Mondo, si trattava largamente di una metafora. Eppure non sarebbe poi così lontano dalla letterale verità dei fatti dire lo stesso delle remotissime profondità marine, oltre i cinque, seimila metri dalla luce del Sole, ove nel corso di millenni ha avuto modo di svilupparsi un fenomeno dall’andamento alquanto singolare. Col che intendo l’ancestrale accumulo, per effetto dei venti e rigurgiti geologici a partire dai camini termali, di un’infinità di particelle di metalli pesanti, soprattutto manganese, successivamente in grado di costituire al giro dei millenni delle tipiche concrezioni botroidali. Ovvero in altri termini, oggetti bitorzoluti della dimensione approssimativa tra quella di un uovo e una patata, letteralmente disseminati come si trattasse di affascinanti oggetti del desiderio. Carichi di opulenza e straordinarie opportunità. Da qui i tentativi già effettuati, i primi dei quali risalgono all’inizio degli anni ’70 ad opera di varie compagnie multinazionali, di sollevare in qualche modo tali oggetti soprattutto nella prossimità delle coste, in maniera analoga a quanto fatto in alcune località produttrici dei diamanti marini africani. Senza tuttavia riuscire mai a trovare un approccio sistematico realmente efficiente, causa le notevoli capacità logistiche incipienti in simili circostanze di procura. Almeno fino a questi ultimi anni. Come apprezzabile dal video qui prodotto nel 2019 dal MIT di Boston, in cui il Prof. Thomas Peacock ci descrive con un l’ausilio di una grafica 3D gli ultimi progressi, e quella che potrebbe costituire una vera e propria avanguardia, di una delle industrie nascenti che potrebbero caratterizzare i restanti tre quarti del XXI secolo: l’attività mineraria in acque profonde o deep-sea mining, come preferiscono chiamarlo i nostri amici e colleghi d’Oltremare…
progresso
A quel punto il prezzo del petrolio era stellare. Per questo riprendemmo, lentamente, a veleggiare
Risale al 24 settembre la notizia del tempestivo varo da parte della DSIC (Dalian Shipbuilding Industry Co.) del primo vascello dimostrativo per un nuovo approccio alla consegna di merci e materie prime attorno al mondo. Una nave cargo sotto molti aspetti al passo coi tempi odierni, tranne che per un singolo, ma appariscente dettaglio: l’incombente presenza di quattro rettangoli dell’altezza di 40 metri, che si stagliano come gigantesche antenne satellitari sopra il ponte di una lunghezza approssimativa poco superiore a quella della torre Eiffel. Ma è nel momento in cui il flusso del vento cambia improvvisamente da ponente, che l’effettivo ruolo dei sottili monumenti diviene improvvisamente chiaro. Quando assolutamente all’unisono, come spinti da una forza misteriosa, si voltano a 45 gradi per sfruttarne il più possibile la propulsione. Esattamente come se costituissero gli alberi e pennoni, totalmente anacronistici, di uno spropositato veliero. Impossibile, o quasi… D’altra parte è un tempo che si calcola ormai in secoli, quello trascorso dall’ultima volta in cui l’energia eolica fu utilizzata estensivamente in campo commerciale dai galeoni, schooner e brigantini di un tempo, al fine di accorciare le distanze tra i remoti lidi che si affacciano presso gli oceani della nostra Terra. Un mondo largamente privo di segreti per lo meno dal punto di vista geografico, esclusi quelli generati progressivamente ed in maniera collaterale dai corsi e ricorsi della storia umana. Vedi quello che immediatamente segue nella nostra trattazione: possibile che un battello da trasporto da almeno un paio di centinaia di migliaia di tonnellate possa essere agevolmente mosso da un lato all’altro del mappamondo, usando UNICAMENTE l’energia prodotta dallo spostamento atmosferico dei gradienti di pressione che ne seguono e precorrono gli spostamenti? Dopo tutto, per le onde ha sempre funzionato. Ma il segreto da prendere in considerazione in questo caso è un altro. E riguarda quello che può essere ottenuto dall’unione di diversi approcci coincidenti alla stessa identica, fondamentale esigenza. Dopo tutto occorre risalire almeno all’ultimo trentennio del XIX secolo, per tornare a vedere navi definibili come dei veri e propri velieri intente a solcare agevolmente i mari, l’ultima generazione di tali battelli, dotati distintivamente di moderni scafi costruiti in metallo, con conseguente aumento della resistenza ed affidabilità in condizioni oceaniche al di fuori della norma. Narrano le cronache, d’altra parte, di come la barque finlandese a quattro alberi Pamir fosse riuscita a doppiare nel 1949 Capo Horn con soli 33 uomini a bordo, costituendo effettivamente l’ultimo bastimento a propulsione eolica ad avere il coraggio e la ragione di riuscire a farlo. Le ragioni principali sono almeno tre di cui la parte maggiore, assai probabilmente, esula dalla presa di coscienza del senso comune. A partire dal modo in cui (punto primo) una nave dotata di alberatura comporta operazioni molto più complesse per il suo carico e scarico, aumentando esponenzialmente i tempi che dovrà trascorrere all’interno dei porti di approdo, durante cui non potrà rendere nessun tipo di guadagno alla sua compagnia di gestione. E poi, punto secondo, va considerata l’inerente difficoltà di addestrare, stipendiare e disciplinare un equipaggio di decine di persone, laddove il comandante dovrà essere seguito da una squadra molto più ridotta quando di far muovere il suo vascello sarà stato incaricato un grosso motore alimentato a petrolio. Che del resto potrà funzionare sempre a regime, indipendentemente dalle condizioni climatiche e l’eventuale sussistenza di un’insidiosa bonaccia…
Il più famoso ingegnere preistorico sfrutta i microbi per progredire all’Età del Ferro (di palude)
Esistono punti di svolta, nella progressione tecnologica dell’uomo, che aprono immediatamente i portali del cambiamento, lasciando indietro il semplice ricordo delle metodologie impiegate fino a quel momento. Vedi il modo in cui, attorno al XIII secolo a.C, tra i ritrovamenti archeologici della parte centrale del territorio europeo iniziano a scomparire quei particolari manufatti, creati dalla lega che è l’unione del rame e dello stagno. Questo perché la migliore alternativa, più resistente, duttile quando portata fino al punto di fusione, potenzialmente affilata, aveva la caratteristica di arrugginirsi e disgregarsi progressivamente al contatto diretto con gli elementi. Caratteristiche determinanti, di quel metallo bianco argenteo che siamo soliti chiamare “il ferro”. Apparentemente simile come presupposti di lavorazione, benché derivante da processi generativi totalmente differenti e non più basato sull’esistenza di un efficiente sistema dei commerci, causa la distanza geografica dei due componenti della lega impiegata fin dal tempo di culture risalenti ad oltre un millennio prima di quei giorni. Come esemplificato dalla famosa lettera su tavoletta d’argilla del 1.750 a.C. indirizzata ad Ea-nasir, mercante accadico che aveva venduto dei lingotti di rame di scarsa qualità al collega Nanni, il quale chiedeva indietro la somma corrisposta secondo “le norme del buon vivere civile”. Difficoltà pratiche, e commerciali, che sarebbero un giorno state lasciate indietro, con la scoperta del metodo a disposizione per poter sfruttare quella che costituisce una tra le più comuni e diffuse sostanze chimiche del pianeta Terra. Ce ne mostra i presupposti il nostro vecchio amico John di Primitive Technology, l’archeologo sperimentale della regione australiana del Queensland che diventò famoso anni fa per i suoi silenziosi video dimostrativi delle tecniche di architettura, ingegneria e lavoro utilizzate dai nostri più remoti antenati. Il quale senza l’utilizzo di profondi scavi o miniere, realizza in questo caso un metodo capace di permettere una via d’accesso alla terza, e più duratura, delle tre principali culture materiali dell’umanità pregressa. Partendo da un passaggio semplice ed altrettanto tradizionale, se applichiamo la logica alle nostre conoscenze dell’antica arte metallurgica di molte civiltà: l’individuazione di un acquitrino in cui l’acqua appare rossastra e le piante sembrano crescere a fatica, avvelenate da una qualche sostanza di provenienza assolutamente “naturale”. Poiché tale risulta essere, in fin dei conti, il processo di ossidazione di sostanze solforose e tetrationati di origine biologica da parte del gruppo batterico cosmopolita dal nome di Acidithiobacillus, capace di trarre sostentamento da due fonti estremamente differenti: l’anidride carbonica e l’acida trasformazione delle suddette sostanze nel minerale idrato della limonite. Così che l’amico digitale e celebrato costruttore di capanne, una volta raccolta con un bricco di terracotta (creato da lui stesso in episodi precedenti, inutile dirlo) il suo fluido colmo di segreti, provvede a riversarlo in una ciotola porosa, affinché agisca da filtro naturale capace di lasciar correre via l’acqua, conservando nel conseguente residuo terroso le particelle minerali contenute al suo interno. Preparando coerentemente una certa quantità di carbone da pezzi di legno raccolti in giro, prima di passare a quella che potremmo definire la fase principale del suo processo arcano di stregoneria, ciononostante assai tangibile ed utile al raggiungimento dello scopo finale…
L’arcaica utilità delle bombe-trappola disposte intenzionalmente sui binari del treno
Il macchinista del potente treno a vapore spinse innanzi la leva che controllava la potenza, perfettamente consapevole del lungo tratto rettilineo che lo separava dal capolinea di Birmingham, al termine di una lunga giornata di lavoro. “Finalmente ci siamo. Cara, aspettami con la cena!” pensò in silenzio, mentre scrutava con lieve preoccupazione l’orizzonte nebuloso, con un vago accenno di nebbia dovuta all’avanzare di un fronte di bassa pressione. E proprio sul finire di quel fatidico secondo, all’improvviso, udì un suono roboante provenire dalla ruota anteriore destra della locomotiva, perfettamente riconoscibile da parte del suo orecchio allenato. “Uno, segnala 270 metri di distanza dal primo cartello che indica la stazione. Con questo tempo…” Ma tutto ciò era veramente possibile? Percorreva quella tratta ormai da svariati anni, e sapeva perfettamente di essere ancora a svariati chilometri dalla meta. Con giusto il tempo necessario a dubitare di se stesso, mentre avvicinava la sua mano ai controlli per decelerare, l’uomo sentì all’improvviso il secondo colpo. “Due… Rallentare causa condizioni problematiche sui binari.” Effettuando un gesto deciso, adesso, smorzò significativamente l’erogazione della potenza, mentre il fumo in eccesso proveniente dalla ciminiera andava a confondersi in oscure volute tra le nebbie di un cielo indistinto. Ma soprattutto, protese l’orecchio, per il terzo possibile richiamo. Che puntualmente, al trascorrere dei pochi attimi necessari a percorrere una ventina di metri, emerse chiaramente dal ritmico sferragliare del veicolo simbolo della sua professione. “Tre… Frenare!” Più rapido, adesso. Il macchinista rimise la leva in posizione di quiete, mentre girava la manopola usata unicamente nei casi d’emergenza. Per buona misura, nel contempo, tirò la catena che azionava la sirena, nella futile speranza che potesse servire a preparare i suoi pochi passeggeri, principalmente pendolari di ritorno da lavori periferici e fuori dall’ambiente urbano. Un rumore stridente, adesso, proveniva da sotto il fondo dell’angusto ambiente cubicolare, mentre con espressione preoccupata, l’uomo si sporse per quanto possibile fuori dall’apertura laterale, per cercare di scorgere quanto distante fosse dall’unica possibile ragione di una simile manovra. La spinta inerziale in avanti adesso era significativa, portando le sue mani a premere dolorosamente sulla struttura metallica della vettura. Ma d’un tratto, lo vide: il convoglio espresso per Nottingham, completamente immobile sui binari, causa un probabile guasto tecnico o alle condutture del vapore. Effettuata una serie di rapidi calcoli, non poté fare a meno d’interrogarsi sul suo destino, mentre si affrettava a rientrare e mettersi nella zona più sicura del suo posto di lavoro. Quante volte aveva temuto uno scenario simile, eppure, eppure… Mentre il potente rumore dei freni continuava ad aumentare e scintille circondavano l’abitacolo, il treno rallentò progressivamente. “Perfetto, così non deraglieremo.” Pensò il macchinista “Ora non ci frantumeremo…” Più piano, sempre più lentamente. Finché d’un tratto, il movimento diventò una lenta marcia e fu allora che un quarto colpo risuonò nell’aria tersa della sera. “Contatto! Ma siamo sani e salvi… Sia lode a Santa Barbara, la protettrice di ogni tipo d’esplosivo, cannone o petardo per l’uso ferroviario.”
Questo si era prefigurato e tanto aveva fatto per realizzarlo, Edward Alfred Cowper, ingegnere ed architetto di numerose innovazioni in epoca vittoriana, relative a quel particolare mezzo di trasporto che nell’ora del bisogno aveva dato il suo contributo al nuovo mondo tecnologico dell’Inghilterra figlia della rivoluzione industriale. Figlio di un inventore, quell’Edward Shickle che nel 1820 aveva collaborato a creare la pressa da stampa verticale, nato nel 1819 e diventato soltanto 14 anni dopo un apprendista del celebre John Braithwaite, costruttore della prima locomotiva in grado di percorrere un miglio in un tempo inferiore ad un minuto. Minori tempi d’attesa dunque, ma anche maggior pericolo, soprattutto nel caso in cui possibili imprevisti sui binari avessero potuto insorgere contemporaneamente a condizioni climatiche tutt’altro che ideali. Fu così che pensando approfonditamente al problema, in un’epoca in cui soluzioni di comunicazione a lunga distanza montate su di un treno risultavano tanto improbabili quanto un sistema di localizzazione satellitare, Cowper elaborò un sistema infallibile per far sapere all’incaricato che avrebbe dovuto intervenire onde prevenire l’insorgere del disastro. Nient’altro che un dischetto di metallo facilmente deformabile, con all’interno una certa quantità di polvere da sparo. Fornito di un paio di “braccia” utilizzate per fissarlo ai binari in caso di necessità, affinché la semplice pressione del treno potesse comprimerlo, causandone l’immediata detonazione. Un’evenienza particolarmente difficile da ignorare…