All’interno dello spazio cavernoso ed oscuro, un compatto edificio si staglia lugubre nelle pesanti tenebre, in paziente attesa della sua ultima alba. D’un tratto una sirena suona brevemente, dando luogo all’accensione delle due dozzine di astri artificiali che circondano le sue mura. Il surreale condominio di 6 piani, adesso apparso in tutta la sua legnosa magnificenza, blocca soltanto in parte la prospettiva d’insieme di un gruppo di scienziati e supervisori, posizionati al sicuro dietro il vetro spesso parecchi centimetri, un palcoscenico degno di fantascientifici e pericolosi esperimenti con creature mutanti di distanti dimensioni o pianeti. Niente di tutto questo, tuttavia, connota il senso di questi momenti, quando l’evidente capo della congrega preme, con gesto magniloquente, il grande bottone rosso posto innanzi a lui sulla plancia. Con un potentissimo boato, è l’inizio: porte, finestre, mura e pilastri strutturali iniziano il proprio viaggio rapido e costantemente ripetuto, di traslazione laterale, longitudinale e perpendicolare al tempo stesso, che farà tutto il possibile per tentare di ridurlo a un cumulo di macerie. È l’Apocalisse tascabile, in confezione pratica e costantemente pronta da consumare…
Ed alla fine, perché non andare fino in fondo alla questione? Quando si ha la possibilità d’inscenare le possibili conseguenze di un disastro, con obiettivo sperimentale e di perfezionamento delle contromisure, alcuni potrebbero fermarsi alle dinamiche di una situazione su scala ridotta. Dopo tutto le scienze parallele della matematica e della geometria sembrerebbero puntare, di concerto, all’ideale consequenzialità del rapporto tra cause ed effetti, particolarmente per quanto concerne questioni collegate all’ingegneria e la costruzione degli edifici. La relativa imprecisione di un tale assioma, assieme a molti altri, fu tuttavia dimostrata in Giappone durante il verificarsi del grande terremoto dello Hanshin con epicentro a Kobe del 1995. All’incirca 20 secondi di durata, durante cui una buona parte della regione venne scossa con la magnitudine davvero impressionante di 6,9. Abbastanza per radere al suolo una città nella stragrande maggioranza di altri luoghi al mondo, ma che in base alle casistiche pregresse, e grazie alla straordinaria architettura antisismica di questo paese, avrebbe dovuto limitare in buona parte le nefaste conseguenze dell’evento. Limitare a “sole” 6.400 vittime, 40.000 feriti e 240.000 sfollati, una mera frazione di coloro che subirono le peggiori conseguenze del precedente grande disastro tellurico del Kantō, finito per costare la vita a più di 140.000 persone nel 1923. Merito dei perfezionamenti strutturali e dei materiali abitativi, senz’altro, benché l’immediata impressione collettiva in ambiente tecnico fu che il numero potesse essere ulteriormente ridotto, e che in effetti lo sarebbe già stato, se soltanto fosse stato possibile predire accuratamente i pro ed i contro di ciascuna possibile scorciatoia d’assemblaggio e rifinitura edilizia. Lungi dall’essere a capo di un paese incline a perdersi d’animo, soprattutto in materia di disastri naturali, il governo giapponese incaricò quindi l’Agenzia per la Scienza e la Tecnologia d’implementare nuove metodologie di studio e sperimentazione, all’interno di un nuovo organo gemellato definito con l’acronimo di NIED: National Institute for Earth Science and Disaster Resilience. Ma nessuno, in quel drammatico momento, poteva immaginarsi fino a che punto i membri del consiglio dei sapienti si sarebbero inoltrati per raggiungere la propria sacrosanta mission procedurale.
idraulica
Piccola finestra sui sistemi per riuscire a stringere il bullone gigante
Problemi come questo furono una componente principale, fin dall’inizio, dell’interfaccia operativa sistematica tra il mondo industriale e coloro che costituiscono, al tempo stesso, i suoi arbitri e utilizzatori umani. Poiché nostra è la dicotomia tra l’ambizione e la condiscendenza, rispettivamente nei confronti di quanto è desiderabile ottenere in determinate circostanze, rispetto ai limiti fisici e mentali inerenti nel contesto tangibile dell’esistenza. E non vi è funzione maggiormente rilevante, di quella che collega il risultato perseguibile al margine d’errore latente. Prendiamo, per esempio, il caso della flangia: caratteristica strutturale di un tubo. Se non altra componente lineare di un impianto, che dovendosi trovare saldamente collocato saldamente in posizione, si troverà ad allargarsi perpendicolarmente in un disco finale; ragionevolmente traforato, ad intervalli regolari, da una serie di fori perfettamente tondi. E dentro di essi cosa mai potremmo prevedere prevedere, se non gli elementi che provvederanno a cementare l’ideale assemblaggio avvitandolo una serie plurima di volte, ancora e ancora, finche neanche in benché minimo refolo d’aria (per non parlar dell’acqua) possa uscire da una minima quanto indesiderabile fessura latente? Il che significa, signori, olio di gomito… Senz’altro, ma anche un certo grado di continuità e coerenza, come ebbe famosamente a rilevare l’impiegato del servizio idrico di New York J. H. Sharp nel 1931, frustrato dallo stringimento più che mai variabile, e purtroppo spesso insufficiente, nei diversi siti rilevanti della rete sotterranea urbana per la semplice ragione che anche utilizzando leve o moltiplicatori di forza, i nostri muscoli non sono stati concepiti per determinare in maniera scientifica quanto possa essere “abbastanza” in un contesto che fuoriesce largamente dalla nostra percezione naturale del mondo. Ecco qui che scaturì l’idea, destinata a un lungo seguito e processo evolutivo, della prima chiave dinamometrica manuale. Ovvero a quel tempo, nulla più che una chiave di manovra del tipo anglosassone (la tipica wrench) ma dotata di un complesso meccanismo di misurazione con deviazione della leva d’appoggio, per assegnare un numero alla resistenza del bullone di turno, indipendentemente dalla soggettiva percezione del suo utilizzatore. Il che poteva certamente funzionare, in una larga serie di contesti, ma che dire dell’evoluzione progressiva delle aspettative che potremmo al giorno d’oggi ricondurre ad una simile esigenza? Pensate a tal proposito al fissaggio di un albero di trasmissione tubolare di una centrale idroelettrica, di un grande motore navale o agli elementi strutturali di ponte sospeso. Tutte situazioni in cui la scala della forza necessaria, assieme alla sua precisione in fase di montaggio, si trovano semplicemente ad una scala largamente al di sopra dalle cognizioni precedenti. Ed è qui che l’energia muscolare umana, sostanzialmente, esce totalmente fuori dal quadro in essere. Lasciando il posto a tre diversi approcci: un pistone, la pressione, il calore interno. Ciascuno corrispondente ad una particolare tipologia di strumenti.
Cominciamo dunque il nostro elenco dall’attrezzo noto come chiave a torsione, che forse il più diffuso, ma non necessariamente versatile, dei tre approcci che andremo a citare. Quello consistente nell’impiego di un meccanismo a cassetta, ovvero finalizzato a ricoprire e circondare il bullone, coadiuvato da un raccordo corrispondente esattamente alla misura del componente, necessariamente collegato a due tubi di raccordo per l’immissione, a seconda dei casi, di fluido idraulico o aria ad altissima pressione. Tutto questo al fine d’indurre il moto in un cilindro dotato di una camma, che pur facendo avanti e indietro, può soltanto spingere innanzi l’ingranaggio esterno alla brugola, così da stringere (o allargare) il bullone. Simili strumenti, d’altra parte, devono per forza essere voltati dall’altra parte, nel caso in cui si debba stringere piuttosto che allargare, o viceversa…
La città che regola l’orologio in base alla direzione in cui scorre il fiume
La piccola comunità urbana di St. John, nella regione del Nuovo Brunswick, presso la punta occidentale del Canada e a ridosso dell’isola di Nuova Scozia, è tagliata letteralmente in due da una profonda gola. Scavata nel suolo roccioso dalle acque del fiume omonimo, che sorge in Maine per poi estendersi verso settentrione e poi puntare nuovamente verso meridione, passando per questo tratto vorticoso particolarmente celebre per la sua capacità di attirare le foche. Che nei periodi di alta marea si spingono nell’entroterra, risalendo energicamente il canale naturale, per poi attendere qualche ora mentre si rilassano e catturano i pesci che transitano da quelle parti. Finché verso la metà del pomeriggio, gradualmente, il flusso del fiume inizia a rallentare e poi si arresta del tutto. E dopo il passaggio di qualche minuto di pregna aspettativa, inizia a scorrere nel senso diametralmente opposto. Vortici si formano tra le diverse insenature, gorghi e rapide insensate. Mentre i pinnipedi, venendo trascinati in una sorta di appassionante Luna Park, compaiono e scompaiono, s’inabissano per poi tornare a galla più entusiaste di prima. A dire il vero, potrebbero pensare eventuali osservatori dal ponte sospeso posto a 41 metri d’altezza, sembra proprio che si stiano divertendo. D’altra parte, chi potrebbe mai riuscire a dargli torto? Di luoghi come questo, ce ne sono pochissimi al mondo. Senza neppure avventurarsi ed entrare nel merito di come, nel complesso, nessuno possa evidenziare la portata del fenomeno nella stessa misura delle appropriatamente denominate Reversing Falls. L’idraulica effettiva conseguenza di una quantità d’acqua stimata attorno ai 100 miliardi di litri, che ogni giorno abbandonano temporaneamente l’Oceano Atlantico per fare il loro ingresso in questo golfo totalmente al di fuori dell’influsso delle grandi correnti. Poi tornando, senza falla, di la da dove erano venute. Il che tende a fare un certo effetto sulle naturale aspettative della fisica, inclusa quella largamente nota secondo cui le cose fluide dovrebbero tendere a scorrere in direzione del mare, almeno per la maggior parte del tempo. Mentre vige qui la regola per cui ciò avvenga, in modo sostanziale, esattamente il 50% delle volte, mentre per il rimanente segmento dell’arco quotidiano tende a verificarsi l’opposto; un fenomeno già noto agli abitanti ancestrali di questi luoghi, le tribù indigene dei Mi’kmaq, molto prima della venuta dei coloni europei. Che qui collocavano una delle avventure più memorabili del loro Dio e Creatore Glooscap, il quale si trovò a combattere in mezzo ai flutti il castoro gigante che aveva bloccato il fiume. Riuscendo infine a scacciarlo, per poi colpire con una grande mazza la diga che aveva orgogliosamente costruito e lanciarla a molti chilometri di distanza fino alla baia antistante, dove si sarebbe trasformata nell’isola di Partridge. Dando inizio alla vendetta di questa versione nordamericana del mostro di Scilla, antico divoratore delle navi. Ma sarebbe stato l’esploratore francese Samuel de Champlain, all’inizio del XVII secolo, a dare per primo una spiegazione ragionevolmente scientifica del flusso diseguale delle rapide, coniando per riferirsi ad esse il toponimo francese di Chutes réversibles. Ora esiste una teoria effettiva secondo cui un tempo, quando il ghiaccio resisteva in quantità maggiore sulla cima delle montagne a causa di temperature in media più fredde, questo segmento del fiume ospitasse effettivamente una cascata. Grazie al complicato sistema di mensole e declivi che si trova nascosto sotto le acque spumeggianti, tale da incrementare ulteriormente il comportamento erratico della corrente. Persino quando, nei mesi primaverili ed a causa del grande afflusso del freshet (ghiaccio liquefatto) la corrente smette d’invertirsi due volte al giorno. Costringendo gli abitanti di St. John, finalmente, a studiare più frequentemente le lancette dell’orologio…
Lo strano verme rosso che s’insinua per riuscire a riparare il tubo
“E quindi scaveremo una profonda buca, dentro cui calare l’oblunga conduttura in plumbum” Disse l’idraulico, parlando nella lingua dei Romani: “Al suo interno, scorrerà dell’acqua…” Pura fantascienza. Se nel mondo antecedente all’invenzione delle tubature urbane, qualcuno avesse tentato di teorizzare il trasferimento di grandi quantità di liquidi soltanto grazie al mezzo della pressione indotta, giù dalle alte arcate degli acquedotti e in dentro le insulae e le villae repubblicane, in molti avrebbero immediatamente dubitato della sua sanità mentale. Eventuali personalità membri della classe dirigente, temendo un tentativo di truffa, avrebbero tentato di farlo arrestare! Ma le cose cambiano in base ai bisogni delle persone. E quindi eccoci qui, un paio di millenni dopo quel punto di svolta nella storia, del tutto incapaci di concepire la vita quotidiana senza l’ausilio di semplici comodità come l’igiene pubblica, la vasca da bagno o lo sciacquone del WC. Un mondo asservito, ed al tempo stesso sostenuto, da una fitta e imprescindibile ragnatela di tubi. Eppure strutture come queste, non importa il materiale in cui siano state costruite (un bel giorno si sarebbe passati addirittura a metalli privi d’effetti nocivi sul sistema nervoso e sui reni!) richiedono un certo livello di manutenzione. Giungendo al punto di sostituirli quando anni d’ossidazione, accumulo di calcare, infiltrazioni di terra e radici, li avranno resi ancor meno scorrevoli della tana di un castoro di lago. Salvo l’applicazione di particolari… Metodi. E un certo canale d’applicazione della risolutiva tecnologia moderna.
Il tipo di video relativo alla questione appare semplice nel suo svolgimento, per quanto arduo da interpretare ad opera dei non iniziati. Un addetto fuori dall’inquadratura avvicina quello che appare a tutti gli effetti come un cannone ad aria compressa all’evidente ingresso di un cilindrico pertugio. Da cui fuoriesce, al volgere di pochi fatidici secondi, una sorta di camera d’aria rossa, azzurra o d’altri colori, che senza neanche l’accenno di una deviazione s’insinua nella tondeggiante apertura. Pazientemente, allora, egli attende, prima di dirigersi, come al suono di un segnale inaudibile, all’altro capo della longilinea faccenda. Ove un’altra volta, il biscione lentamente emerge, ma stavolta accompagnato da qualcosa di… Diverso. È come una calotta rigida, una sorta di scorza dura. Situata in evidente corrispondenza con l’involucro convesso del tubo. Visibile soltanto per pochi secondi appena, prima che l’oggetto all’interno cresca ancora in modo esponenziale fino all’inversione di una tendenza che potremmo definire del tutto imprescindibile e inerente. Qualche volta, prima di procedere alla rimozione, può servire del tempo. Fino a uno o due giorni, che risultano del resto assai migliori dell’alternativa. Poiché ciò che abbiamo visto in questo breve documentario della Natura in azione, altro non è che l’applicazione del metodo chiamato con anglofono acronimo CIPP – Cured in Place Pipe Lining, capace di sostituire in determinate circostanze l’effettiva e laboriosa opera di scavo, rimozione e sostituzione dell’intera conduttura pre-esistente. Qualcosa di semplicemente rivoluzionario, nell’approccio a particolari imprese di riparazione idrauliche all’interno di aree fortemente trafficate, magari sotto l’asfalto o altre superfici che necessiterebbero di essere preservate.
Si tratta, in buona sostanza, di un’evoluzione del processo (slip lining) praticato per la prima volta negli anni ’40 dello scorso secolo, quando si scoprì una vasta gamma di situazioni in cui risultava preferibile inserire un tubo più piccolo e stuccarlo all’interno delle fognature ormai non più funzionali, recuperandone il funzionamento senza dover necessariamente rifare tutto da capo. Tutto questo al costo di una perdita di capienza e conseguente flusso laminare abbastanza significativi. E se ora vi dicessi che il processo precedentemente descritto può ottenere lo stesso risultato con una perdita di funzionalità decisamente inferiore, ed un risultato finale persino più resistente del tubo di partenza il giorno stesso in cui era stato installato?