È una scena così tipica ed al tempo stesso, dannatamente affascinante: il ricercatore dottorato all’Università di Stanford, posto sotto la supervisione di un assistente di bioingegneria, che scruta attentamente dentro a un microscopio nel laboratorio. Alla ricerca di… Correlazioni, punti d’interesse, loci e nessi significativi. Siamo nel 2009. Ma mentre aumenta la concentrazione, ad un tratto, costui si rende conto di qualcosa. Un fatto chiaro e lampante, da tempo immemore sotto gli occhi di ciascuno, ma che tuttavia nessuno, almeno a quanto gli è dato di sapere, si è mai dato la briga di commentare. Né soprattutto studiare e/o pubblicare, fatto ancor più interessante dal suo punto di vista. Così alza gli occhi, si guarda intorno, e mentre aspetta di rimettere a fuoco il mondo delle cose in proporzione, improvvisamente esclama: “Prof, le gocce sembrano vive!” Ed è tutta una questione di contesto. Perché dal punto di vista dell’uomo della strada, una simile affermazione poteva essere soltanto interpretata come la battuta di un’ubriaco, o al limite, l’osservazione di un qualcosa di ovvio e rinomato. Ma basta mettere quattro, cinque lacrime sopra una superficie liscia e non permeabile, per rendersi conto che non è esattamente così. A meno che detto piano di lavoro sia il metallo di una padella, riscaldata al di sopra del punto di ebollizione, un fluido giace nel suo luogo, grosso modo immobile, finché non transita immancabilmente verso un altro stato di materia. Questa è la dura legge della gravità. Mentre in quel caso specifico, meraviglia della meraviglie, sopra un vetrino privo di caratteristiche particolari, una ventina di puntini s’inseguivano e scostavano l’un l’altro, parevano dei microbi in una coltura di Pasteur. Fenomeno, questo, certamente degno di essere studiato, almeno nell’opinione del supervisore, al punto che l’intero laboratorio, negli ultimi anni, ha dedicato una parte del suo tempo alla risoluzione di questo “mistero”. La cui genesi probabilmente, soprattutto per chi ha la chimica nel sangue e nella mente, era già per sommi capi molto chiara. Ma che del resto, una volta dimostrata, approfondita e reso controllabile, poteva trovare un’applicazione nella costruzione di superconduttore o pannelli solari autopulenti. Per non parlare della cosa più importante: creare una simulazione istantaneamente comprensibile, e attraente, dell’origine stessa della vita sulla Terra.
Il nome dell’istigatore accidentale dello studio, il ricercatore ancora fresco dei suoi studi, è Nate Cira, mentre il suo supervisore di ruolo e capo laboratorio è Manu Prakash, il tipo di scienziato che, come afferma nel suo profilo ufficiale presso il sito dell’università, “lascia che sia l’istinto e la curiosità a guidarlo.” I due hanno quindi ottenuto la partecipazione di un terzo elemento, il giovane collega Adrien Benusiglio. Nel corso dei ritagli di tempo ricavati tra quelli che erano sicuramente studi dalle applicazioni più immediate, i tre hanno impugnato quindi altrettante pipette di precisione, iniziando a mettere alla prova i vari fluidi a disposizione in questo strano e nuovo sport. È importante notare che nell’esperimento originario di Cira, come anche nel video di apertura, ciascuna goccia fosse composta essenzialmente di due tipi di molecole distinte: una parte d’acqua, un’altra di glicole propilenico (1,2-propandiolo) componente basilare di molti coloranti per il cibo, medicinali e disinfettanti. Ed andava rintracciata proprio in questa commistione di elementi, essenzialmente, l’origine della questione. Perché come per l’appunto dicevamo, tutti i fluidi sono soggetti ad evaporazione, ma non tutti allo stesso ritmo. Ciò che succede quindi nella goccia “mista” è che il glicole propilenico tende a scappare via per primo trasformandosi in gas, anche a temperatura ambiente, scegliendo come via di fuga la parte bassa della goccia, dove le pareti sono più sottili. Mentre l’acqua, in conseguenza di tale tendenza, pur mantenendo un peso superiore, si ritrova in alto, generando turbolenze non indifferenti. Questo, quindi, causa il movimento. Ma non spiega la questione ancor più affascinante: perché le gocce sembrano, letteralmente, cercarsi tra di loro, o in altri casi paiono respingersi a vicenda?