Un bulbo artificiale può risolvere la sete nel mondo?

waterseer

Tutti conoscono, o per lo meno hanno sentito parlare, della leggendaria rosa del deserto. Un fiore nascosto sotto la sabbia delle dune, racchiuso in forma dormiente all’interno di un agglomerato di cristalli di gesso, che per innumerevoli anni e secoli può attendere il suo momento. Finché un giorno, per ragioni incomprensibili, la strana pietra si fessura, e da essa sorge uno svettante fusto del colore di una quercia. Che cresce, e cresce verso il cielo, fino a spalancarsi in un tripudio di sfaccettature frastagliate. Ed è a quel punto, dai suoi petali, che sgorga la più preziosa tra le ricchezze dei viaggiatori: copiosa, rinfrescante, chiara e dolce… Certo, lo scienziato non può che restare perplesso. Niente di simile ha ragion d’esistere in alcun ambiente, e la strana pietra , ce lo insegna la geologia, non è in realtà altro che un litotipo formatisi presso una riserva evaporitica nel sottosuolo. Ma l’ingegnere aggiungerebbe: si, una cosa simile possiamo costruirla. Si, una cosa simile l’abbiamo GIÀ costruita. Si chiama Waterseer, e potete finanziarla (nonché prenotarla) qui.
Fondamentalmente, l’avevamo sempre saputo: per assicurare la prosperità dell’intero consorzio umano, senza limiti di geografia o confini, è assolutamente necessario fare affidamento sulla tecnologia. Non è purtroppo possibile, preso atto dell’attuale numero di individui che vivono nel mondo, per non parlare delle prospettiva della loro crescita futura, pensare di accontentarsi delle sole naturali risorse del pianeta Terra. Il cibo non è infinito, il carburante non è infinito. E per quanto concerne l’acqua… Come probabilmente ben saprete, il liquido per eccellenza è una delle sostanze più comuni presso lo sferoide che chiamiamo Casa. Il 70% del mondo ne è ricoperto, mentre il nostro stesso organismo, che si è evoluto a partire da un simile brodo primordiale, ne è composto al 50-60%, fino al 78% nei neonati. Ma volete sapere quanta dell’acqua che vediamo con i nostri occhi è in percentuale adatta al consumo da parte da nostra? In effetti, non più del 2,5%. Ed è per questo che ogni giorno 8.000 persone muoiono di sete, mentre altre 1.000 subiscono le conseguenze di una delle molte malattie a cui si è soggetti tentando di dissetarsi da una fonte inadeguata.
Fino a un tal punto, è forte il nostro istinto di sopravvivenza: bastano poche ore senza bere, oppure un singolo giorno, perché la disperazione possa portarci a ricercare la potabilità dove in realtà, essa non sarebbe mai potuta esistere, a causa dell’inquinamento, dei microbi o della sporcizia. Come altrettanto celebre è l’immagine, più volte messa in evidenza per stimolare le nostre coscienze, delle madri o padri in determinati paesi aridi che devono percorrere, ogni giorno, numerosi chilometri per raggiungere un distante pozzo e assicurare la sopravvivenza della propria famiglia. Il che, in luoghi che risultano il più delle volte disagiati anche dal punto di vista economico e dei servizi, assicura l’impossibilità di svolgere un lavoro edificante, acquisire nuove capacità o semplicemente passare del tempo con i figli. Ed è per far fronte ad una tale spiacevole situazione, che ormai da svariate decadi diverse organizzazioni umanitarie stanno ricercando lo strumento risolutivo, un apparecchio che permetta, in qualche modo, di incrementare la quantità di fluido dissetante disponibile dove gli acquedotti civici non sono mai esistiti, e mai potranno farlo in futuro. Gli approcci sono molteplici: filtrare l’acqua non potabile o depurarla, per renderla tale, permettere di trasportarla in modo più efficiente, ad esempio attraverso dei serbatoi portatili concepiti per rotolare sul terreno, oppure crearla dall’aria stessa, attraverso il processo della deumidificazione. Proprio questo ultimo metodo, sulla carta, potrebbe sembrare il migliore, benché tenda a richiedere dei ponderosi, costosi macchinari, nonché l’ancor più problematica risorsa dell’energia elettrica. O forse sarebbe più corretto dire, che così è stato fino ad oggi.

Leggi tutto

La sfera robotica con il cervello vegetale

hortum-machina

Avete mai visto l’astro lunare che rotola per le strade di una metropoli cinese, con tanto di crateri, Mare Tranquillitatis e relitto del modulo Apollo abbandonato ad attendere il ritorno dell’umanità?  Probabilmente si, visto che un qualcosa di ragionevolmente simile si è verificato lo scorso settembre a Fuzhou nel Fujian, quando la furia del tifone Meranti ha scardinato dai suoi supporti e proiettato per le strade un enorme pallone raffigurante la nostra Sorella notturna, precedentemente approntata come addobbo per la festa più importante dopo il capodanno. Elargendo a tutti gli automobilisti, che guidavano tentando di schivarla, il dono di una mattinata in qualche modo significativa e diversa. Tanto che qualcuno presso il collettivo dell’Interactive Architecture Lab, facente parte del prestigioso UCL (University College di London) potrebbe forse aver pensato: “Palle imprevedibili giganti? Eureka! È proprio ciò di cui abbiamo bisogno anche qui da noi. Sarà meglio mettersi al lavoro…” Ma no, scherzi a parte: Hortum Machina, B. è davvero molto più di questo. È un giardino, è un esperimento di robotica interattiva, è il tentativo di ridare un’importanza ormai perduta alla natura. Così come a proposito del classico aforisma: “Se i cani potessero parlare, cosa direbbero?” Esso tenta di rispondere al quesito trasversalmente analogo: “Se le piante potessero muoversi, dove andrebbero?” Una domanda all’interno della quale, sotto un certo punto di vista, potrebbe nascondersi il significato stesso della nostra vita e tutte le altre sulla Terra. E che passa per il tramite di un’invenzione pratica davvero interessante: un elemento per definizione architettonico (perché ospita qualcosa di statico, come le piante) che tuttavia può muoversi in maniera imprevedibile. Ma è COME riesce a farlo, a renderlo speciale: perché esso opera grazie agli stessi impulsi elettrofisiologici degli esseri viventi contenuti al suo interno. Probabilmente saprete in effetti, per lo meno per sentito dire, che le piante possono provare sensazioni, e reagire di conseguenza. Celebre è l’esperimento dei pomodori cresciuti con l’ausilio delle sinfonie di Mozart e Beethoven, così come la sua capacità di reagire meglio a determinati pericoli biochimici grazie alla lezione dei propri ricordi. Sulla base di simili concetti i due studenti William Victor Camilleri e Danilo Sampaio, sotto la supervisione del Prof. Ruairi Glynn, hanno attraversato un percorso progressivo mirato a concedere agli appartenenti al più statico dei regni viventi (le piante, per l’appunto) il controllo di una serie di muscoli artificiali, frutto del processo tecnologico diametralmente opposto alla loro più pura essenza.
Ciò che ne è nato… È un cyborg, un benevolo mostro di Frankestein, la meraviglia più inquietante dei nostri tempi. Una sfera geodetica, ovvero composta da travi in metallo che percorrono i suoi cerchi massimi, e all’interno un incosaedro motorizzato con ciascuna delle sue facce occupate da una piccola fioriera artificiale contenente una commisurata coltivazione di una pianta specifica originaria del Regno Unito. Al centro dell’apparato, non visibile, è stato posto un computer con un apparato di misurazione, connesso a piccoli elettrodi inseriti nelle piante stesse. Grazie ad un apposito software creato per l’iniziativa, dunque, lo strumento di precisione risulta in grado di “leggere” la mente delle sue ospiti viventi (come, esattamente, non si sa) ed interpretare le loro fondamentali necessità: ad esempio, una pianta potrebbe avere bisogno di più luce. Eventualità, diciamolo, tutt’altro che rara nel caso della fioriera che si troverà volta per volta nella parte inferiore della sfera. Oppure magari, una delle sue sorelle fotosintetiche potrebbe sentirsi minacciata dall’eccessivo caos di un particolare ambiente urbano, richiedendo uno spostamento verso lidi più verdi e silenziosi. Parimenti, la presenza di un livello di smog eccessivo indurrebbe nell’impossibile creatura un immediata voglia di migrare. A quel punto, dunque, il ridisporsi ad arte degli elementi componenti l’icosaedro all’interno faciliterebbe l’inizio del processo di rotolamento, ponendo in effetti le “inconsapevoli” piante al nostro stesso umano livello. Certo, la realtà potrebbe essere piuttosto problematica. Nello stesso rendering presentato dall’UCL, Hortum Machina, B. viene mostrato mentre si avventura sulla corsia di scorrimento di una trafficatissima strada cittadina…

Leggi tutto

La grande danza delle goccioline colorate

Dancing Droplets

È una scena così tipica ed al tempo stesso, dannatamente affascinante: il ricercatore dottorato all’Università di Stanford, posto sotto la supervisione di un assistente di bioingegneria, che scruta attentamente dentro a un microscopio nel laboratorio. Alla ricerca di… Correlazioni, punti d’interesse, loci e nessi significativi. Siamo nel 2009. Ma mentre aumenta la concentrazione, ad un tratto, costui si rende conto di qualcosa. Un fatto chiaro e lampante, da tempo immemore sotto gli occhi di ciascuno, ma che tuttavia nessuno, almeno a quanto gli è dato di sapere, si è mai dato la briga di commentare. Né soprattutto studiare e/o pubblicare, fatto ancor più interessante dal suo punto di vista. Così alza gli occhi, si guarda intorno, e mentre aspetta di rimettere a fuoco il mondo delle cose in proporzione, improvvisamente esclama: “Prof, le gocce sembrano vive!” Ed è tutta una questione di contesto. Perché dal punto di vista dell’uomo della strada, una simile affermazione poteva essere soltanto interpretata come la battuta di un’ubriaco, o al limite, l’osservazione di un qualcosa di ovvio e rinomato. Ma basta mettere quattro, cinque lacrime sopra una superficie liscia e non permeabile, per rendersi conto che non è esattamente così. A meno che detto piano di lavoro sia il metallo di una padella, riscaldata al di sopra del punto di ebollizione, un fluido giace nel suo luogo, grosso modo immobile, finché non transita immancabilmente verso un altro stato di materia. Questa è la dura legge della gravità. Mentre in quel caso specifico, meraviglia della meraviglie, sopra un vetrino privo di caratteristiche particolari, una ventina di puntini s’inseguivano e scostavano l’un l’altro, parevano dei microbi in una coltura di Pasteur. Fenomeno, questo, certamente degno di essere studiato, almeno nell’opinione del supervisore, al punto che l’intero laboratorio, negli ultimi anni, ha dedicato una parte del suo tempo alla risoluzione di questo “mistero”. La cui genesi probabilmente, soprattutto per chi ha la chimica nel sangue e nella mente, era già per sommi capi molto chiara. Ma che del resto, una volta dimostrata, approfondita e reso controllabile, poteva trovare un’applicazione nella costruzione di superconduttore o pannelli solari autopulenti. Per non parlare della cosa più importante: creare una simulazione istantaneamente comprensibile, e attraente, dell’origine stessa della vita sulla Terra.
Il nome dell’istigatore accidentale dello studio, il ricercatore ancora fresco dei suoi studi, è Nate Cira, mentre il suo supervisore di ruolo e capo laboratorio è Manu Prakash, il tipo di scienziato che, come afferma nel suo profilo ufficiale presso il sito dell’università, “lascia che sia l’istinto e la curiosità a guidarlo.” I due hanno quindi ottenuto la partecipazione di un terzo elemento, il giovane collega Adrien Benusiglio. Nel corso dei ritagli di tempo ricavati tra quelli che erano sicuramente studi dalle applicazioni più immediate, i tre hanno impugnato quindi altrettante pipette di precisione, iniziando a mettere alla prova i vari fluidi a disposizione in questo strano e nuovo sport. È importante notare che nell’esperimento originario di Cira, come anche nel video di apertura, ciascuna goccia fosse composta essenzialmente di due tipi di molecole distinte: una parte d’acqua, un’altra di glicole propilenico (1,2-propandiolo) componente basilare di molti coloranti per il cibo, medicinali e disinfettanti. Ed andava rintracciata proprio in questa commistione di elementi, essenzialmente, l’origine della questione. Perché come per l’appunto dicevamo, tutti i fluidi sono soggetti ad evaporazione, ma non tutti allo stesso ritmo. Ciò che succede quindi nella goccia “mista” è che il glicole propilenico tende a scappare via per primo trasformandosi in gas, anche a temperatura ambiente, scegliendo come via di fuga la parte bassa della goccia, dove le pareti sono più sottili. Mentre l’acqua, in conseguenza di tale tendenza, pur mantenendo un peso superiore, si ritrova in alto, generando turbolenze non indifferenti. Questo, quindi, causa il movimento. Ma non spiega la questione ancor più affascinante: perché le gocce sembrano, letteralmente, cercarsi tra di loro, o in altri casi paiono respingersi a vicenda?

Leggi tutto

Un robot da taschino che trascina 2000 volte il suo peso

Micro Tug

È la domanda che si sentono fare di continuo: “Si, ma cosa serve?” Gli artisti, i filosofi, gli scienziati. Quasi mai, gli inventori e gli ingegneri. Perché loro è il campo dei problemi da risolvere direttamente, in modo chiaro per la gente: un buco da tappare, il caffè da riscaldare, un cardine da far movimentare. Mentre è diversa la storia di chi, visionario dei possibili sentieri, si applichi sinceramente nel produrre…Qualcosa. Qualsiasi cosa ed è proprio questo il punto: incrociando i meri presupposti, sovrapponendo le risorse disponibili, talvolta riscrivendo ciò che sia “possibile” all’interno di un laboratorio…E tutto per dare i natali a una realtà completamente nuova e totalmente fuori dagli schemi a noi già noti. Che non ha un’applicazione in campo pratico, proprio perché ne fuoriesce pienamente. È sostenuta da una pura idea. Ma che razza di fantastico pensiero! Quello che ha guidato il Laboratorio di Biomimetica ed agile Manipolazione dell’Università di Stanford, nella costruzione della sua imprevista e imprevedibile mascotte, subito battezzata con un nome dalla forte componente commerciale (alquanto strano, in quel contesto) ovvero l’adorabile µTug. Capitalizzando sul tipico schema del mondo informatico, che ormai da tempo mutua la “i” minuscola dalla tradizione Apple, per indicare voglia di creatività, ma qui sostituita con quel suono bilabiale dell’alfabeto greco, usato nel campo della fisica per riferirsi a tutto ciò che ha un milionesimo della grandezza del suo punto di riferimento. Siamo scienziati, che ci volete fare. Ed era un’iperbole, naturalmente: non è “così” piccolo. Ma per quello che riesce a fare il qui citato robottino, per lo meno quando le condizioni sono adatte alla sua operatività, risulta ad ogni modo eccezionale. La questione è semplice davvero rilevante: da una parte abbiamo l’evidenza degli insetti, creature che nonostante la loro relativa piccolezza riescono a influenzare anche notevolmente il loro ambiente circostante. E dall’altra l’evidenza degli esseri artificiali provenienti da simili progetti accademici, generalmente frutto di una qualche innovazione nei campi della mobilità motorizzata, della conservazione dell’energia etc. Generalmente troppo piccoli per svolgere una mansione d’effettiva utilità. Così nasce la risposta-tipo a quel quesito di apertura: “Ecco…È un drone. Può portarsi dietro una telecamera, per cercare sopravvissuti tra le macerie di un qualche disastro naturale.” Davvero, la frequenza con cui ricorre un simile obiettivo dichiarato è sorprendente. Perché l’emergenza, per sua stessa definizione, è una condizione in cui i metodi convenzionali non servono a risolvere il problema. In effetti è teoricamente possibile che si verifichi, nell’intera storia futura del mondo, un caso in cui ciascun pesce robotico, serpente articolato, salamandra radiocomandata, sarà proprio quel che serve per salvare vite umane. Strisciando fino al punto del pericolo, dove un umano in carne ed ossa non avrebbe mai potuto penetrare. Possibile, non vuol dire poi probabile.
Ma qui si sta facendo il passo ulteriore: quello dell’interazione. Chiunque abbia tenuto in mano un coleottero lucanide, una di quelle creature lunghe diversi centimetri, con il rostro aculeato sul davanti e un gran bel paio d’elitre cangianti, ben conosce l’illusione che ci trae in inganno: simili esseri, benché più piccoli del palmo di una mano, sono tutt’altro che deboli o delicati. Vivono le loro giornate, piuttosto, racchiusi in rigide armature chitinose, che scalate a dimensione umana ci renderebbero del tutto impervi ad urti, colpi o schiacciamenti. E poi sono, soprattutto, FORTI. Si aggrappano con le sei zampette come fossero altrettanti artigli, facilmente in grado di lasciare un segno sulla pelle umana. Sarebbe il tipico paradosso dell’artropode: più sono piccoli, più riescono a stupirci per il modo in cui riescono ad imporsi sull’ambiente circostante. Nei due articoli scientifici di supporto al progetto, liberamente disponibili sul sito del laboratorio, viene citato altrettante volte il caso della formica tessitrice, con tanto d’immagine a corredo: l’insetto sospeso a testa in giù, che sostiene facilmente un peso di metallo da 500 mg. Per intenderci, grande due volte lei. Come, come ci riesce? Il segreto è tutto nel principio dell’adesione.

Leggi tutto